
Reducing False Positives in Runtime Analysis of Deadlocks

Saddek Bensalem 1 and Klaus Havelund 2

i VEP.IMAG, Centre quation - 2, avenue de Vignate, 38610 Gieres, France

Saddek. Bensa!em©imag. fr,

http ://_-verimag. imag.fr

2 KestrelTechnology, NASA Ames Research Center, Moffett Field,CaliforniaUSA

havelund_email, arc.nasa. gov,

http ://ass. arc.nasa.gov/havelund

Abstract. This paper presents an improvement of a standard algorithm for detecting dead-

lock potentials in multi-threaded pro_ams, in that it reduces the number of false positives.

The standard algorithm works as follows, The multi-threaded program under observation is ex-

ecuted, while lock and unIoc_ events are observed. A graph of locks is built, with edges between

locks symbolizing locking orders. Any cycle in the graph signifies a potential for a deadlock.

The typical standard example is the group of dining philosophers sharing forks. The algorithm

is interesting because it can catch deadlock potentials even though no deadlocks occur in the

examined trace, and at the same time it scales very well in contrast to more formal approaches

to deadlock detection. The algorithm, _however, can yield false positives (as we]/ as false neg-

atives). The extensiozi of the algorithm described in this paper reduces the amount of false

positives for three particula:r cases: when a gate lock protects a cycle, when a single thread

introduces a cycle, and when the code segments in different threads that cause the cycle can

actually not execute in parallel. The paper formalizes a theory, for dynamic deadlock detection

and compares it to model checking and static analysis techniques. It furthermore describes an

implementation for analyzing Java programs and i_ application to two case studies: a planetary

rover and a space craft altitude control system.

I Introduction

Concurrent programming can in some situations give a prpgrammer a flexibility in organizing interact-

ing code modules in a conceptually much simpler way than is possible with sequential programming.

It can potentially also speed up a program in case a multi-processor architecture is used. The Java

programming language [I] explicitly supports concurrent programming ti_rough a selection of concur-

rency language concepts, such as threads and monitors. Threads execute in parallel, and communicate

via Shared objects that can be locked using syn6hronized access (a keyword in Java) to achieve mu-

tual exclusion. However, with concurrent programming comes a new set of problems that can hamper

the quality of the software. Deadlocks form such a problem category. In [17] a deadloc/c is defined as

follows: " Two or more threads block each other in a vicious cycle while trying to access synchroniza-

tion locks needed to continue their activitieS'. That deadlocks pose a common problem is emphasized

by the following statement in [17]: "Among the most central and subtle liveness failures is deadlock.

Without care, just about any design using synchronization on multiple cooperating objects can contain

the possibility of deadlocl£. Most of NASA's software, that controls planetary rovers and space crafts

is concurrent, and hence therefore poses a risk- to mission success.

The difficulty in detecting deadlocks comes from the fact that concurrent programs _-pically are non-

detern_dnistic: several executions of the same program on the same input may yield different behaviors

- due-t_`s_g`ht_di_e_ences-in-th_way-t_zeads.aze.schedu_ed_TbAs-means.in-par-ti_ular-that_generatmg-the-

particular executions that expose a deadlock is difficult. "various technologies have been developed

by the formal methods community to circumvent this problem, such as static analysis and, most

recently, model checking. Static analysis, such as performed by tools like JLint [2], PolySpace [19],
and ESC [8], analyze the source code without executing it. These techniques can be very efficient,

but yield many false positives, and additionally cannot well analyze programs where the object

structure is very dynamic. Model checking has recently been applied to software (in contrast to only
designs), for example in the Java PathFinder s/stem (JPF) developed by NASA [12, 23), and in
similar _stems [10, 7, 15, 22]. A model checker explores all possible execution paths of the program,

and will therefore theoretically eventually expose a potential deadlock. This process is, howevel-, quite

resource demanding, in memory consumption as well in execution time, especially for large realistic
programs consisting of thousands of lines of code. Using model checking for deadlock analysis has
been discussed by J. Corbett [5]

Typically static analysis and model Checking both try to be complete in the sense of avoiding false

nega_tives: aH possibilities are examined. Furthermore, model checking tries to be general in exploring

all kinds of errors. In the _evetopment of tools there _ sometimes a conflict between generality (an

important theoretical criterion) and efficiency. In order to make the techniques accepted in practice
an important strategy can be to identify simple sub-classes of properties, whose analysis is tractable.

Deadlocks is such a sub-class. We shall in particular investigate a technique based on trace analysis: a
program is instrumented to log synchronization events when executed. The algorithm then examines

the log K[e, building a lock graph, which reveals deadlock potentials by containing cycles. Tkis tech-

nique has previously been implemented in the the commercial tool Visual Threads [I1] and scales very
well since an arbitrary execution 'trace can reveal deadlocks even though such do not occur during the

execution. The approach is essentially to turn a property (deadlock freedom) into a highly testable
property (cycle freedom), that has higher probability of being detected if violated. The algorithm,

however, can give false positives (as well as false negatives), putting a burden on the user to refute

such. Our goat is to reduce the amount of false positives reported by the algorithm, and for that
purpose we have modified i_ as reported in this paper. Themodified algorithm has been. implemented
in Java to analyze Java programs, but the principles and theory presented are universal and apply

in full to concurrent programs written in languages like C and C++ as well, using for example the
POSIX threading library [18].

The paper is organized as follows. Section 2 introduces preliminary notation used throughout the

rest of the paper. Section 3 defines the notion of deadlock, outlines how deadlocks can be introduced
in Java programs, and then dischsses different ways of analyzing programs for deadlocks such as
static analysis and model checking. Trace analysis is then suggested as a solution with a purpose, and
the notion of testable proper_y is defined. Section 4 presents the algorithm in three stages, starting

with the classical algorithm as it is imagined implemented in [1i], and then continuing with two
modifications, each reducing false positives. Section 5 shortly describes the implementation of the
algorithm in the Java PathExplorer tool and presents the results of a couple of case studies. Finally,
Section 6 contains conclusions.

2 Notations and Preliminaries

A labelled transition system is given by (Q, E, R), where Q is the set of states, E the Set of labels
and R C Q x E x Q is the transition relation. A directed graph is a pair G -- (S, R) of Sets satisfying r_!i

R C S × ,9. The set _ is cMled the edge set of G, and its elements are called edges. A path p is a non- i !

empty graph G = (S,-_) of the form ,9 = {xl, z2, ..., xk} and R = {(zl, z2), (x2, x3),..., (xk-1, xi)}, i
where _he xi are all diStinCt. The nodes z0 £fid _rk ar_ hnked by p and are called its ends; we often _!'i
refer to a path by the natural sequence of its nodes, writing, say, p = xl, zs, ..., xk and calling p a [i

path from x1 to z_. A cycle is a path where the ends xl and xt are the same. In case where the edges

. _ _ are-_a_eHed..w-i%h_e_eme_t_n_.L_G_is_t_ip_et-(_qr_-P_)-and_al_ed-a_abe_ed_aph-with-_-C-S-x-Z.-x-_`
A labelled path, respectively cycle, is a labelled graph with the obvious meaning. Given a sequence

J_

l/
i

cr = zl, z2,...,x,,, we refer to an element at the position i in _ by c_[i] and the length of cr by. Icri.

We denote by _ the prefix xl,..., x_. Given a mapping M : [A -4 B], we let Mt[a _ b] denote the

mapping M emended with a mapping to b. Value lookup is denoted by MIa]. We denote the empty

mapping by _].

3 Deadlock Detection

Deadlock is one of the most serious problems in multitasking cohcurrent programming systems. As

early as in the 60's the deadlock problem was recognized and analyzed, Dijkstra [9] described it as

the problem of the deadly embrace. In multitasking concurrent systems, a process can request and

release resources local or remote (for example, data objects in database systems) in any order, which

may not be known ahead of time and a process can request resources while holding others. If the

sequence of the allocation of resources to processes is not controlled in such environments, deadlock

can occur. Deadlock is a constant threat where the systems have high degree of resource and data

sharing.

Two types of deadlocks have been discussed in the literature [21] [161: resource deadlocks and com-

munication deadlocks. In resource deadlocks, a process which requests resources must wait until it

acquires all the requested resources before it can proceed _dth its computation. A set of processes

is resource deadlocked if each process in the set requests a resource held by another process in the

set. In communication deadlock, messages are the resources for which processes wait. Reception of a

message takes a process out of wait. A set of processes is communication deadlocked if each process

in the set is waiting for a message from another process in the set and no process in the set ever

sends a message. In this paper we focus onIy on resource deadlocks. The deadlock-handling approach

that we propose is based on a conservative algorithm that is an e.xtension of a standard algorithm for

detecting deadlock potentials in multi-threaded programs. Formally the concept of deadlock can be
defined as follows.

Definition 1 (Deadlock) : A deadlock can occur between n threads tz,. .. , tn if they access n shared

locks L = {lz,..., ln} and there is a state of the ezecution, and an enumeration E of L, such that t_

holds E(i) in that state and ti next wants to take E(j) for some j # i.

3.1 Deadlocks in Multi-threaded Java Programs

Java [11 is a general purpose object oriented programming language with built in features for multi-

threaded programming. Threads can communicate via shared objects by for example calling methods

on those objects. In order to avoid data races in _hese situations (where several threads access a shared

object simultaneously), objects can be locked Using the syachronized statement, or by declaring

methods on the shared objects synchronized, which is equivalent. For example, a. thread _: can

obtain a lock on an object A and then execute a statement S while having that lock as follows:

synchronized(A) (S}. During the execution of S, no other thread can obtain a lock on A. However t

can take the same lock recursiveiy, corresponding to calling several methods on a Shared object. The

lock is released when the scope of the synchronized statement is left; that is, when execution passes

the "}" bracket. Java also provides the wait and notify primitives in support for user controlled

inter]eaving between threads. While the synchronized primitive is the main source for resource

dead]ocks in Java, the Bait and ,_otify primitives are the main source for communication deadlocks.

Since this paper focuses on resource deadlocks, we shall in the following focus on Java's capability of

creating and executing threads and on the synchronized statement.

-Consider-..the classical-dining philosopher- example,_ ilI.ustrated_in. Eigur-e 1. A fork-is an_object of class

Fork. The Fhilosopher ciass extends the Thread cIass and provides a run method, which represents

the thread behavior when started with the start method. The constructor of the Philosopher class

stores the forks it uses. The philosophers are created in a ring With the lastphilosopher using fork

number 0 due to the application of the modulo operator "Y.'.A counter is used to limitthe amount

of meals consumed. A deadlocked state occurs when all philosophers have taken their leftfork,but

not yet their right. In this state they cannot take their left fork since it has been taken by the left

neighbor. This is the kind of cyclic resource deadlock situation that we will explore. In the next

sections we shall explore different techniques for detecting such deadlocks.

class Fork{}

class PhilosophQr ex%ends Thread{

Fork left; Fork right;

int cotmt - O;

public Philosopher(Pork left,Fork riEht){

this.left - left;

this.right - right ;

star_ 0 ;

}

public void run(){

while(count < lO){eatO;}

}
}

privatl void eat(){

synchronized (l,ft) {

synchronized (right) {

cou_t++;

}
}

}

c!a_s Main{

sl:atic _':Lual imt N - 10;

public static void main(String[] a.rgs){

Fork_ forks - nov Fork[N];

for(int i-O;i<N;i++).{forks[i] - no. Fork();};

for(in_ i-O;i<N;i++){new Philosopher(forks[i] ,forks[(i+l)Y.N]);}

}
}

Fig. i. The Dining Philosophers

3.2 Detecting Deadlocks By Analyzing Code

A multi-threaded Java program can naturally be analyzed,by simply executing it, or an instrumented

version of it, on an existing Java Virtual Machine. This is the solution that we shall eventually

explore. However, in this section some alternative solutions will be examined, 'namely static analysis

and model checking. Each tooI was applied to the above program, but none of the tools performed

convincingly as shall be explained. The experiments wereperformed on a 2.2 GHz DELL desktop

with 2GB available memory, of which 1.5 GB were allocated for the experiment.

JLint [2] is a static analysis tool, that examines a Java Program for a limited set of errors. It does this

by analyzing the class files in bytecode format, but without executing them. The errors it can detect

can be classified into sequential errors, such as null pointer references and array-out-of-bound errors;

and concurrency errors, such as data races and deadlocks. JLint's analysis is very local, without

considering the larger context of a problem. Also, it does not perform a complicated alias analysis.

For these reasons JLint is extremely fast. The above progra_n was analyzed in less than 0.1 second.

However, no warnings were emitted, in particular the deadlock potential was not detected. The main

reason for this is the use of an array to store the forks and the use of the modulo-operator to create

the cyclic ring of philosophers and forks. The program is simply "too dynamic" in its creation of locks

for JLint to detect the problem.

Java PathFinder (JPF) [23] is a model checker that can analyze a Java pro_am dynamically, by

executing it (the class fries) on a specialized Java Virtual Machine. JPF, however, n6t only explores a

single-executiorL.patl__ hut .alLexecution_paths _ thereby- exploring_alLpossible interlea_dngs of threads

in the protein. If a resource deadlock is possible, it will then eventually be reached. In order to

l'/

minimize the search, JPF stores aIl reached states, and avoids the search of a subtree of a state

if that subtree has already been explored before (the state is stored). JPF also uses various other

techniques to minimize the search, such as heuristics for prioritizing execution paths. We used a

particular heuristics called mosZ-btocked, which should be suited for this problem. It causes JPF

to maximize thenumber of threads that are blocked. For N = 15 JPF found the deadlock in 32.4

seconds using 343 MB of memory. For N = 20 JPF also found the deadlock, this time in 2 minutes

and 51 seconds using 1,45 GB. For N = 21, however, JPF went out of memory after 4 minutes and

40 seconds, using 1.46 CB.

We finally tried to verify a version of the program that did not have a deadlock, to see how well JPF

could verify that there were no deadlocks. This forces JPF to explore the entire state space, which of

course reduces the amount of philosophers that can be analyzed. The modified version of the program

contains a gate lock, Say a shared salt shaker, which is taken as the first thing by all philosophers,

before they take their forks, hence preventing the cyclic deadlocks. Hence each philosopher performs:

class Philosopher{

static Objec¢ salt_shaker - neu Object();

public void run(){

while(coupe < 10){

symchronized_sal__shaker){

,a_ O ;

)

With N = 3 JPF verified the program correct (deadlock free) in 3 minut, es, using 256MB. However,

with N = 4 JPF goes out of memory after 26 minutes, using 1,46GB. The above program is of course

not realistic, but illustrates the point: neither model checking, nor static analysis handles this example

convincingly. For model checking thisbecomes even more clear for real-sizedapplications.

3.3 Detecting Deadlocks By Analyzing Traces

An alternative to the above mentioned code analysis techniques is to execute an instrumented version

of the program, thereby obtaining an execution trace, and then regard this trace as a dynamic

abstract model of the program that can be analyzed for deadlock symptoms. The assumption is

that the program has not deadlocked, and hence the trace does not explicitlyrepresent a deadlock

situation. The goal is to determine whether one from the trace can deduce the existence another

execution (trace) that deadlocks. In particular,as will be explained in the following,one can apply

model checking or specialized analysis (as in staticanalysis) to the dynamic model. The advantage

of the dynamic model approach isthat a dynamic model contains precise information (although only

for one trace), whereas a static model as used in JLint typicallyonly contains partial information

(although for all traces).

When analyzing a program for deadlock potentials, we are interested in observing all lock acquisitions

and releases. The program can be instrumented to emit such events whenever locks are taken and

released. Specifically, we are interested in two types of events: t(_, o), which means that thread t locks

object o; and z_(t, o), which means that thread t unlocks object o. A lock trace _r = el, e2:...: e,_ is

a finite sequence of lock and unlock events. Let E_ denote the set of events occurring in _. Let T_

denote the set of threads occurring in E#, and let L_ denote the set of locks occurrif_g in E_. In

the remainder of this paper we assume the existence of an execution trace cr obtained byrunning an

instrumented prog-ram. W'e assume for conve .nience that the trace is veer_rarzt free in the senlse that an

_ akeady_.acquiredJo.ck is._never re-acquired by. the same. thread (or any other thread of course) before

being released.Formally this can stated as follows,i trace _-is reen_rcr_/tee if:

For aI1 positions i, j s.t. i < j, threads t_, t2 E T_, and objects o E L_: if c_[i] =

l(tl, o) A_3] = l(t_,o) then there e_sts k ,.t i < k < j A_N = _(tl, o)

Note that Java supports reentrant locks by MlowL, lg a lock to be re-taken by a thread that already has

the lock. However, the instrumentation can generate reentrant free traces ff it is recorded how many

times a lock has been acquired by each thread. Normally a counter is introduced that is incremented

for each lock operation and decremented for each Unlock operation. A lock operation is only reported

if the counter is zero (it is free before being taken), and an unlock operation is only reported if the

counter is 0 again after the unlock (it becomes free again).
9

In the following, two approaches to analyzing traces for dead_lock symptoms will be outlined: model

checking and use of specialized cycle detection algorithms. We shall conclude that specialized algo-

rithms are to be preferred.

3.4 Model Checking _'_races

The idea here is to apply model checking to the execution trace in order to examine all possible

interleavings of the trace, and determine whether one of them reaches a deadlock state. This can

be done as follows. First we project the trace on each thread in To.. This results in a trace for each

thread, which contains exactly those events the thread contributed to the trace. Each such trace

can be regarded as an abstract sequential program, denoting a corresponding transition system. The

parallel composition (product) of these transition systems can then be formed, and examined for

deadlock states. This can be formalized as follows. First we define the projection of the trace _ on

each thread in T,, resulting in a transition system for each projection.

Definition 2 (Projected trace transition systems) Given an execution

trace _z= e!, e2,..., e,_ with Ta = { tl,. :., tin}. Let trot, be the projection of cr on ti for i E {1,..., m},

meaning the trace obtained by eliminating all events not performed by ti. We associate a projected

labelled transition system Si = (Qi, Ei,---_i) for each v'_t, such that :

- Q, = (L 2,..., _,}, wher_k, = t_,,, I+ i,
- E_ is E_,,, and

- --÷iC Qi × Ei x Qi is defined as {(i,_[it, i + 1) !i e (1,..., !_lt_l}}

The states of the transition system for a proiected trace are the positions in the projected trace and

the events are the events of the trace. The transition relation relates neighbor positions in the trace

corresponding to a sequential execution semantics. The product of the obtained transition systems

represents the Parallel composition of these, and hence represents all possible interleavings of the lock

and unlock events from different threads, respecting that locks can only be held by one thread at a

time. The composed transition system is defined as follows.

Definition 3 (Composed trace transition system) Given the projected transition systems S_ =

(Qi, Ei,----*i), i = t,..., m, associated to cr,t,. We define the composition of the transition systems

Si, denoted by Ili_-_t.S_, by (Q, Z,----_) where :

- Q = (QI x Q2 x... × Q_ x 2a(s)), A(E) is the set of the resources that occurin the events orE,

and_

r _ 2 . .- Z= _z _ U U E_, and

lJ
lJ
I
_F

i'.i

!,i

i

- ---_C_ Q × E × Q is defined bv :

l(t_.o) ,

si --+i si A o _ Z. (1)
(,1,-. ,, s,,..., s=, L) '_:_) (sl,..., s_,..., s,_,_ U{o})

=(t_,o) l

s, ----+i si (2)
• . '.. s=,e\{o})(<,...,s,, .., s=,_) _(-_°)(<, .., s,, .,

A state of the composed transition system includes a set of locks that have been acquired so far. The

transition relation defines the interleaved execution of the individual transition systems, updating

this set when locks are taken and released. The effect of the set is to prevent a lock to be taken by

more than one thread at a time. Hence, a thread cannot proceed if it needs to acquire a lock that is
in the set.

An execution trace cr el, e2,.. en of lli=l i is a sequence of events such that there exist s_ates
el £2 _3 _

sl,..., s,_ in Q, such that s0 ---+ s_ ---+ s2 ---+ s_, where so = (1, 1,..., 1, {}) is the initial

state, and s,_ (the last state) can progress no further: there does not exist an event e and a state

s=+l such _hat s= _ sn+l. We let Z denote the set of all execution traces of Ili_l&. "vVe say that

a trace in/7 is deadlocked if the last state s= is different from the final state where all threads have

reached their final state: s,_ # (kl, k2,..., km, {}). For such a deadlocked trace _r We further say for
some thread t and lock o that:

- t holds o in _ ff there exists a position i such that v-{i] = l(_., o), and there does not exist a position

j > _such that _[a'j= _(t, o).
*(t,o) , Note that in this case o E £.- t wants o in _r if the last state s,_ = (..., si,..., £) and si ---+i s_.

V/e s&v that the trace c, is deadlock free if the interleaved parallel execution of the projections is

deadlock free in the sense of Definition 1. The following lemma states that this can be determined by

model checking the composed transition system.

Lemma 1 (Trace Model Checking for Deadlock Detection). Let]li=lmSi = (Q,E, ----_) be the

composition of the transition systems S_ = (Qi, El, --*i), i = 1,..., rn, obtained from projecting the

trace _ on the m threads in T_. Let _ be the set of all execution traces of Ilim_lSi. The trace cr is

deadlock free i/and only if there are no deadlocked traces in Z.

As an experiment applying this approach, We handcrafted a Java program corresponding to the

parallel composition of the individual traces obtained by running the deadlocking program given in

section 3.1. Each trace from each thread is essentially I0 calls of the eat() method, resulting in a
rma() method of the form:

public void run()(

aa_ () ;ant () ; aa_: 0 ; eat () ; eat () ;eat () ; oa_: () ; nat () ; Qa',() ;aa'_ ()

}

The count variable and the while loop have been removed. For N = 25 JPF found the deadlock in

14.4 seconds using 105.29 MB of memory. For N = 47 JPF also found the deadlock, this time in 5

minutes and 6 seconds using 1,42 GB. For N =48, however, JPF went out of memory after 6 minutes

-and-15_seconds,_using_k46_GB. A Jr hough-t hese- numbers._are_quit e_imp_essive_for..a_mo de!_checke_,_t he.

results are a lot worse in the case of a deadlock free program, where the mode] checker has to explore

all the states of the program in order to give a verdict. For N = 3 JPF verifiedthe deadlock free

program (introducing the gate lock) correct in 38.6 seconds using 1"16.53MB of memory. For N = 4,

however, JPF went out of memory after 35 minutes and 26 seconds, using 1.46 GB. Model checking

the trace(s) amounts to become domplexity wise the sameas model checking an abstraction of the

original program, where all statements except synchronization statements have been removed. That

is,itcompares to model checking a synchronization skeleton [3]or an abstraction [6]of the program.

-_Vithmore than 3 threads, we have seen that this problem can become intractable in practice in

the case there are no deadlocks (although the approach seems to have some advantages). The next

section explores an alternative.

3.5 Turning Deadlock Freedom to a Testable Property

The alternative approach pursued in this paper consists of building (in linear time) a specialized

lock graph from the trace, which is then analyzed for cycles. A cyclic dependency bet-ween locks

suggests that there exists an execution trace of the program that may deadlock. This technique

has been implemen-ted in the Visual Threads tool [III, and is mentioned in literature on operating

systems [21] [16 I. The approach may yield false positives since such a deadlocking execution may not

exist due to program lqgic not visible in the trace - as well as false negatives, since only one trace is

examined. The approach is a particular instance of a general approach, where a property _ (in our

case: deadlock freedom} is reformulated as a testable property ¢ (in our case: cycle freedom), which

with high probability n will fail on any random execution trace if and only if the program does not

satisfy the original property _ for some trace. In the ideal case, the probability n is 1. ,This ideal

case can be formalized as follows, assuming a s_tisfaction relation _ between traces/programs and
properties.

Definition 4 (Testable property) We say a property ¢ is a t_stable property of a program P w.r.t.
a property _ if and only if:

1. i/_here exists a trace cr of P such that cr '_ ¢, then P _

2. if there exists a trace cr of P such that _r _ ¢, then P _

In particular 1 is equivalent to: _P ,_ _ implies V_ E P. a _ ¢, which states the desirable proper_/"

that if the program P does not satisfy the property _ (that is, there exists a trace which does not

satisfy W) then no matter what execution trace wechoose, this will be detected by verifying the

property ¢. The notion of testable property is an ideal in the sense that if some trace is correct or

flawed we conclude the same for all the traces of the program. For the dining philosopher example

above this is actually the case. In practice, we cannot rely on this idealized view. Consider for example

the following program P_ consisting ofk threads in parallel, where one thread makes a random choice

be_veen 1 aad n:

TI: T2: ... T_:

syach.ronized (L !){ symcRro=i=ed (L2) { sy=chr o=ized(Lk) {

if (ramdo_ (I ,n) -lI) symchr onized (L3) _} symchronizld (LI) _}

symchroaized (L2) {} } }

}

The program P_ represents a dining philosopher problem cont&in/ng a cycle between k threads. The

f_Stthread contains a rando_nized s_nchronization statement that causes the lock L2 only to be taken

ifthe random function returns 1 amongst the numbers from 1 to n. For a given n thishappens with

probability I/n. That is,when running this program there isa probability of i/n that the deadlock

....p.o_teatial_willhe_dete_ct.ed__as_a.c?cle._i__the_loclc..g-zaph__2-q.ote._that_the__pr_obahili___of_.a..dead!ock

occurring, however, is even lower on an ideallyrandomized scheduler since all]cthreads have to in

_J

,i

h ,

addition take their first lock before any one of them attempts to take the second. A model checker will

reach .complexity limits as k as well as n grows, while runtime analysis, will yield more false negatives

as r_ grows. For runtime analysis, however, the size of k has no effect, except for memory consumption

to store the lock graph. Even though the idealized testable property cannot be achieved, a property

can be practically testable, meaning that the probability rz has an acceptable size. In the following

we shall present practically testable properties for deadlock-freedom based on the classical algorithm

for testing cycle freedom in lock graphs. We shall extend this algorithm to avoid false positives of

three different kinds, hence improving the precision of the algorithm.

4 Trace Algorithm Based on Testable Properties

The main task performed by the detection algorithm isto findcycles among transactions each waiting

for a resource held by the other. In essence, the detection algorithm consists of finding cycles in the

lock graph. In the contex_ of multi-threaded pro_ams, the classicalalgorithm sketched in [Ii] works

as follows. The multi-threaded program under observation is executed, while lock and _nlock events

are observed. A graph of locks is built,with edges between locks symbolizing locking orders. Any

cycle in the graph signifiesa potentiM for a de,lock. The trace algorithm is interesting because it

can catch deadlock potentials even though no deadlocks occur in the examined trace,and at the same

time it scalesvery well in contrast to more formal approaches to deadlock detection. This algorithm,

however, can yield false positives (as well as false negatives). In this section, we present first the

classical algorithm and then we present two conservative extensions of this algorithm that reduce the

amount of false positives. W'e start with a through-going example.

4.1 Basic Example

Vv'e shall with an example illustrate the three categories of false positives, The first category, sir_gle

threaded cycles, refers to cycles that are created by one single thread. G_arded cycles refer to cycles

• that are g-uarded by a gate lock "taken higher" up by all involved threads, as demonstrated by the gate

lock introduced in the example in Section 3.2. Finally, thread segmented cycles refer to cycles between

thread segments that cannot possibly execute concurrently. The program in Figure 2 illustrates these

three situations, and a true positive.

Main :

01: ne_ r!O.s=artO;

02: new r20.star=O;

TI: T2: 2%:

03: synchronized(G){

04: synchronized(Ll){

05: synchronized(L2){}

06: }

07: };

08::3 - ne_ "230;

OS: j3.star:O;

10: j3.joinO;

11: synchronized(L2){

12: syuchronized(L!){}

13: }

14: synchronized (G){ 19: synchronized(Ll){

15: synchronized(L2){ 20: synchronized(L2){}

16: synchronized(il){} 21: }

17: }

18: }

Fig. 2. Example containing four cycles, only one o_ whict, represents a deadlock potentiM

i0

The real deadlock potential exists between threads T2 and T3, corresponding to a cycle on LI and

L2. The single threaded .cyclewithin Ti clearlydoes not represent a deadlock. The guarded cycle

between TI and ir2 does not represent a deadlock since both threads must acquire the gate lock G

first,i_inally,the thread segqnented cycle between TI and T3 does not represent a deadlock since T 3

willexecute before 2"i executesits lastsynchronization segment.

For illu_ration purposes we shah assume a non-deadlocking execution trace _ for this program. It

doesn't matter which one since all non-dead/ocking traces willreveal allfour cycles in the prograzn.

We shah assume the following trace of iinenumbered events (the linenumber is the firstargument),

which first,afterhaving started Tz and 2"2from the Main thread, executes Tz unti/the joinstatement,

then executes T2 to the end, then Ts to the end, and then continues with TI after ithas joined on

Ts's termination. The linenumbers are given for illustrationpurposes, and are actuMly recorded in

the implementation in order to provide the user with useful error messages. In addition to the lock

and un/ock events l(Ino,t,o) and u(Ino,t,o) for linenumbers Ino, threads t and locks o, the trace

also contains events for thread start,s(Zno,tl,t2) and thread join,j(Ino,tz,t2),meaning respectively
that _1 starts or joins t2 in linenumber Ino.

or= s(1, Mair_,T1), s(2, Main, T=), I(3,TI,G), I(4, T1,L1), I(5, Tz,L=), u(5,T1,L2), u(6, T1,Lz), u(7, TI,G),

s(9, T_,T_), Z(14, T2,G), _(I_,T2,L=), Z(lS, T2,L_), u(lS, T=,L_),=(IT, T_,L=), _(IS, T2,G), _(19, Ts,L_),

In the remaining part of Section 4, we shM1 present three algorithms for detecting lock cycles in

traces, being increasingly precise in eliminating false positives. First we shall present the classical

algorithm that yields all four cycles as warnings. The final algorithm yields only the true positive for

this example, and no false positives.

4.2 Basic Cycle Detection Algorithm

We shall initially restrict ourselves to traces including only lock and unlock events (no start or join

events). In order to define the lock graph, we introduce a notion that we call a lock context of a trace

in position i, denoted by CL(_, i). It's a mapping from each thread to the set of locks owned by

that thread at that position. Formally, for a thread t _ T= we have the following :

(o, i) =
{o I SJ : J <- i A _r[jJ = l(t,o) A-_Sk:j < k_< i A a[kJ = u(t,o)}

Bellow we give a definition that allows to build the lock graph GL with respect to an execution trace

r. An edge in G2 between two locks l and 12 means that there exists a thread t who owns the object

It while taking the object l_.

Definition 5 (Lock graph) Given an execution trace _ = e_, e=, . . . , e,_. We say that the lock graph

of _r is the minimal directed graph GL = (L, _) such that:

- L is the set of loc_ L_,

- R C_ L x L is defined by (lz, 12) _ t_ if there ezists a thread t _ T_ and a position i > 2 in _r such
that ."

_rli] = l(t, 12) and lz e CL(_r,i - 1)(t)

The definition 5 above is declarative. Ir_ Figure 3 we give an algorithm for constructing the lock graph

from a lock trace. In this Mgorithm, we Mso use the context CL which is exactly the same as in the

defini.tion- 5. _he-only difference is that we don't need to use ex-plicitly the _',,o parameters i and

_. The set of cycles (Section 2) in the graph GL, denoted by cylces(G5), represents the potential

deadlock situations in the pro_am. The lock graph for the example in Fig-ure 2 is also shown in

Figure 3.

1!

Input:Anexecutiontracecr
GL is a graph;

CL : [T# --*2L#] isa lockcontext;

for(_ = 1 .. I_I) do
case O'[i] of

l(t, o) -_
GL := G_ U {(oro) i o'e c_(t)};
eL := c_ t It _- c_(_) U{o}];

,.,(t,o)
c_ := c_ t It _ c_(t)\{o}J

end;

for each c in cycles(GL) do

print (" deadlock potential:",c);

14 14

Fig. 3. The c!assical algorithm and the lock graph

4.3 Eliminating SingIe Threaded Cycles and Guarded Cycles

In this section we present an algorithm that removes false positives stemming from single threaded

cycles and guarded cycles. In [13] a solution was suggested, based on building synchronization trees.

However, this solution could only detect deadlocks between pairs of threads. The algorithm to be

presented here is not limited in this sense. The solution is to extend the lock graph by labelling each

edge between locks with information about which thread causes the addition of the edge and what

gate locks w@re held by that thread when the target lock was taken. The definition of valid cycles will

then include this information to filter out raise positives. First, we define the extended Iock graph.

Definition 6 (Guarded lock graph) Given an execution trace cr = el, e2, ..., e_. We say that the

guarded lock graph of _ is the minimal directed labelled graph GL = (Z., _, R) such that."

- L is the set of locks L¢

- W = T¢ x 2 z is the set of labels, each containing a thread id and a lock set,

- R C_ L x _V x Z is defined by (ll, (t, g), 12) E 1_ if there exists a thread t E T¢ and a position i >_ 2

in _r such that:

_[i]= l(t, 12) and ll E C(G i - 1)(t) and g = C(c% i - 1)(t)

Each edge (lz, (t, g), I2) in R is labelled with the thread t that took the locks l_ and I2, and a lock set

g, indicating what locks t owned when taking I2. In order for a cycle to be valid, and hence regarded

as a true positive, the threads and guard sets occurring in labels of the cycle must be valid in the

following sense:

Definition 7" (Valid threads and guards) Let Gz be a guarded lock graph of some execution trace

and e = (L, W, R) a cycle in cycleS(GL), we say that:

- threads of o are valid ifforall labels e, # E W e # # implies thread(e) # thread(e 0

- guards ofc are valid ifforall labels e, e' E W e # # implies guards(e) Mguards(e 0 =

where, /or a label e E W, tread(e), resp. guards(e), gives the ;_,rs'_, resp. second, component o/e.

12

For a cycle to be valid, the threads involved must differ. This eliminates single threaded cycles.

Furthermore, the lock sets on the edges in the cycle must not overlap. This eliminates cycles that

are guarded by the same lock taken "higher up" by at least two of the threads involved in the cycle.

Assume namely that such a gate-lock exists, then it will belong to the lock sets of several edges in the

cycle, and hence the3r will overlap at least on this lock. This corresponds to the fact that a deadlock

cannot happen in this situation. Valid cycles are now defined as follows:

Definition 8 (Guarded cycles) Let c_ be ar_ execution trace and GL its guarded lock grap.h. We

say that a cycle c E cycles(GL) is a guarded cycle if the guards of c are valid and threads of c are

also valid. We denote by cyclesa(GL) the set o/guarded cycles in cycles(GL).

We shah in this section not present an explicit algorithm for constructing this graph, since its con-

cerns a relatively simple modification to the basic algorithm: the statement that updates the lock

graph becomes: GL := GL U {(o', (t, C(t)), o) I o' E C(t)), adding the labels (t, C(t)) to the edges.

Furthermore, cycles to be reported should- be drawn from: cyclesg(GL).

Let us illustrate the adgorithm with an example. We consider again the execution trace _r presented in

Subsection 4.1. The guarded graph for this trace is shown in Figure 4. The graph contains the same

number of edges as the basic graph in Figure 3, However, now edges are labeIted with a thread and

a guard set. In particular, we notice that the gate lock G occurs in the guard set of edges (4, 5) and

(15, 16). Tiffs prevents this guarded cycle from being included in the set of valid cycles since it is not

guard valid: the guard sets overlap in G. Also the single threaded cycle '(4, 5 7 _ (11, 12) is eliminated

because it is not thread vaIid: the same thread T1 occurs on both edges.

T2.(G,L2) 14 14

/ 7, ,%G, /

LI _f9 --_ %2

"/'2. l G.L2)

Fig. 4. Guarded lock graph

The correctness of the guarded algorithm is stated in the following theorem, which states that any

valid cycle reported by the algorithm for a trace c_ corresponds to a deadlock situation in the composed

transition system, and vice versa. We say that an execution trace _ reflects a cycle c = (L, W, R) if

fora]l (lZ, (t, G), 12) E R, t holds ll in o, and t wants 12 in _r (see Section 3.4 for a definition these

terms).

Theorem 1 (Correctness of guarded cycles). Let _r be an execution trace, GL its guarded lock

graph, and cyclesg(GL) the set of the guarded cycles. Let _ be the set of all the execution traces of
the system rn " =II_=! Si, where the transition systems Si, i 1,...,m, are obtained from projecting the
trace _ on the rn threads in Tcr. Then:

- fo.r__¢l_ c.ycles_ c E_cgcl.¢sg_(_G_5), .ther_e exists an executio.n .trace o" in Z, such that o' is

deadlocked and reflects c (no false positives _th respect to o').

i

t:

il
L[r

J

i

i

f

13

- for all traces o I in Z, ifo t is deadlocked, then there eaists a cycle c E cyclesa(GL), such

that 0 r reflects c (no faZse negatives with respect to 0).

Note that when the above theorem states that there are no false positives or negatives, it is with

respect to the execution trace _z. There may still be false positives and negatives with respect to the

program, []_e execution of which resulted in the trace. The g-uarded deadlock algorithm may in rare

cases miss deadlocks that the classical algorithm finds. As an example consider the program in Fig-ure

2, and consider that the g-uard G in 2"2 is computed as the result of a conditional statement, in one

run it may be G, while in another run it may be G r, different from G. In the latter case, the cycle

between L1 and L2 in threads Tz and T2 is not guarded and there is a deadlock potential. The basic

algorithm will detect this irrespective of whether G or G _ is chosen, while the g-uarded algorithm will

not in case G is chosen. Due to this observation one could report even guarded cycles, but marking
them as likely less severe.

4.4 Eliminating Segmenfied Cycles

tn the previous section we saw the specification of an algorithm that removes false positives stem-

ruing from single threaded cycles and guarded cycles. In this section we present an algorithm that

furthermore removes false positives stemming from segmented cycles. _Ve assume that traces now also

contain start and joint events. Recall the example in Figure 2 and that the basic algorithm reports a

cycle between threads TI (line 11-12) and Ts (line 19-20) on locks LI and L2. However, a deadlock is

impossible since thread T3 is joined on by TI in line I0. Hence, the two code segments: line 11-12 and

line 19-20 can never run in parallel. The algorithm to be presented will prevent such cycles from being

reported by formally introducing suc]_ a notion of segments that cannot execute in parallel. A new

directed segTnentation graph will record which seg_nents execute before others. The lock graph is then

ext&nded with extra label information, that specifies what segments locks are acquired in, and the

validity of a cycle now incorporates a check that the lock acquisitions are really occurring in parallel

executing segments. The idea of using segunentation in runtime analysis was initially suggested in Ill]

to reduce the amount of false positives in data race analysis using the Eraser algorithm !20]. We use

it in a similar manner here to reduce false positives in deadlock detection.

_vfore specifically, the solution is during execution to associate segunent identifiers (natural numbers,

starting from 0) to seg-rnents of the code that are separated by statements that start or join other

threads. For example, if a thread tz currently is in segment s and starts another thread t2, and the

nexl free segunent is n, then tl will continue in segment n and t2 will start in segment n + 1 (it could

have been chosen differently, the main point being that new segunents are allocated). From then on

the next free segment will be n + 2. It is furthermore recorded in the segmentation graph that segment

s executes before n as well as before n + i. In a similar way, if a thread tl currently is in segment

sl and joins another thread t2 that is in segment s2, and the next free segment is n, then tl will

continue in segment n, t2 _ be terminated, and from then on the next free segment will be n + I.

It is recorded that sl as well as s2 execute before n. Fi_are 6 illustrates the segrnentation graph for

the program example in Figure 2. Below we shall formalize these concepts, and finally suggest an

algorith m .

In order to give a formal definition of the segmentation we need to define two functions. The first one,

Cs (o), segrnentction conte_ of the trace o, _ves for each position i of the execution trace 0, the current

segment of each thread t at that position. Formally, Cs(o) is the mapping with type: [Af _* [T_ _-_ A/l],

£_6dia_ed t6 t_a6__, thkt fn-ai_ _ach i56,_i_:i0fi in_6 _fi6_h_l: _iiiSiSih_ tli_it _aiSs _-a6h _h_ad id t6it_

'current segment in tha_ position. It is defined as follows. Let C__'_ = I0 _ [main _ 0]1, mapping

position 0 to the mapping that maps the main thread to seg-ment 0. Then Cs(a) is defined by the use

_gf__t_heth_ e aux_i!ia_r)/functi_on f0 : Tra_qq x Cg_text x Position × C_.urr__e__S.egrr__e.n_t "_ Corf__e_t:

C i'u* i 0cs(_) =/o(_, s ,,) (s)

14

/ .fo(_, Cs, i + 1,n) if e _ g(t,o),u(_,o)},

/o(e_,Cs,i,n)= _/o(_,Cs'c[_--Cs[i-1]t t2_n+2 ,z+I,n+2) ife=s(h,t_), (4)
!
[fo(c, Cst[i_-*Cs[i-iJt[tl _--_n + 1],i + 1, n-I- I) ife=j(tl,t2).

70(<>, cs, i, n) = Cs (5)

The second function needed, #_uoc, gives the number of sag-merits allocated in position i of c_. This

flmction is used to cMculate what is the next segment to be assigned to a new execution block (the

ns in the above example), and is dependent on the number of start events s(tl, t2) and join events

j(tl, t2) that occur in the trace up and until position i, recMling that each start event causes two new

seg-ments to be allocated. Formally we define it as follows : #_uoc(c, i) = Ic _ is I * 2 + Ic _ ly 1.

xv_ can now define the notion of a directed segmen_.ation graph, which" defines an ordering between

segments. Informally, assume that in trace position i a thread tz, being in segment sz = ds(c)(i -

1)(tl), executes a start of a thread t_. Then tl cpntinues in segment n = #_uo_(cr, i - 1) + 1 and t2

continues in segment n + 1. Consequently, (Sl, n) as well as (sl, n + 1) belongs to the graph, meaning

that s: executes before n as well as before n + 1. Similarly, assume that a thread tl in position i, being

in segment s l = ds (0) (i - 1) (tl), executes a j oin of a thread t2, being in se_ent s2 = Cs (a) (i- 1) (t2).

Then ti continues in segment n = #aUoe(C, i - 1) + 1 while t2 terminates. Consequently (sl, n) as well

as (s2, n) belongs to the graRh, mending that Sl as welI as s2 executes before n. The formal definition

of the segmentation graph is as follows.

Definition 9 (Segmentation graph) Given an ezecution trace _r = el, e2,..., e_. We say that a

segmentation graph of cr is the directed graph Gs = (Af, R) where

-]_ {n I n is a natural number } is the set of segments

- R C_.hf x Af is the relation given by (sl, s2) E R if there ezists a position i > t such that

o-[i] = s(tz, t2)A sl = CS(o')(i -- 1)(tl) A (s2 = #azzoc(cq i - 1) + 1 Vs2 = #auoc(c% i - 1) + 2)
Or

[iJ = j(t, t_) A s_ = cs(o-)(i - 1)(h) A s_ = #o.oo(_., i- _) + 1

Given a segmentation g'raph, we can now define what it means for a segment to happen before another

segment, reflecting how the segments are related in time during execution.

Definition 10 (Happens-Before relation) Let Cs = (A/, _R) be a segmentation graph, and G"s =

(All R') its transitive closure. Then given two segments st and s2, we say that Sl happens before s2,

denoted by sl _ s__, if (sl, s.,) _ R*.

Note that for two given segments sz and s_, if neither s_ _. s2 nor s_ _,.sl, then we say that sz happens

in parallel with s_. Before we can finally define what is a lock _aph with segment information, we

need to redefine the notion of lock context, gL(cr, i), of a trace cr and a position i, that was defined

on page 10. In the previous definition it was a mapping from each thread to the set of locks owned

by that thread at that position. Now we add information about what segment ekch lock was taken

in. Formally, for a thread t _ T_ we have the following :

c_c(__,/2(_t).-
.....{(°,s) l_'J:Y <i^-,,_t_r_=l(t,o) ACsC_)(y)(t)=s,_-%:y<_<_iA_ =u(t,o

i

1'

l'

i:'

i

15

We can now give a definition of a lock graph Gc with respect to an execution trace or, that contains

s%_ment information as well as gate lock information. An edge in Gc between two locks li and l=

means, as before, that there exists a thread t who owns an object Ii while taking the object Ix. The

edge is as before labelled with t as well as the set of (gate) locks. In addition, the edge is now further

labelled with the segznents si and s2 in which the locks/I and 12 were taken by t.

Definition 11 (Segmented and guarded lock graph) Given an execution trace cr = el, era--., e_.

We say that the segmented and guarded lock graph of _r is the minimal directed graph GL = (L_ , W,]_)

such that:

- _'= H x (T_ x 2 L_) x-h{ is the set of labels (st, (t, 9), s2), each containing the segment si that

the source lock was taken in, a thread id t, a lock set g (these two being the labels of the guarded

lock graph in the previous section), and the segment so that the target lock was taken in,

- R C L_ x W x £_ is defined by (li, (si, (t, g), s2), I:) E R if there exists a thread t S r_ and a
position i >_ 2 in _ such that:

[i] = I(t, I) and

(ll, st) E CL(_)(i -- 1)(t) and

g = {l' / (l',_) e cL(_)(i - 1)(t)} and
s_.= Cs(_)(i - i)(t)

Each edge (li, (st, (t, g), s2), 4) in R is labelled with the thread t that took the locks li and 12, and

a lock set 9, indicating what locks t owned when taking 12- Furthermore, the segments si and s2

indicate in which seg-ments respectively li and 12 were taken.

Ln order for a cycle to be valid, and hence regarded as a true positive, the threads and guard sets

occurring in labels of the cycle must be valid as before. In addition, the segments in which locks are

taken must now allow for a deadlock to actually happen. Consider for example a cycle between two

threads ti an d t2 on two locks li and 12: Assume fu_her that ti takes li in se,,_nerlt xi and then 12 L'l

seg-ment z2 while t2 takes them in opposite order, in se_wnents Yi and y2 respectively. Then it must

be possible for ti and to- to each take their first lock in order for a deadlock to occur. In other words,

x2 must not happen before yi and Y2 must not happen before at. This is expressed in the following

definition, which repeats the definitions from Definition 7.

Definition 12 (Valid threads, guards and segments) Let Gc be a segmented and guarded lock

graph of some execution trace and c : (L, IT/, R) a cycle in cycles(GL), we say that:

- threads of c are valid ifforalI labels e, e' E W, e _- e' implies thread(e) ¢ thread(e')

- guards ofc are valid ifforaIl labels e, e' E W, e ¢ e' implies guards(e) _9uards(e') - 0

- segments ofc are valid ifforall labels e,e' E W, e # e' implies -, (seg2(el)_,segl(e2))

here, for a label e = Cs,(t, g), s_) _ W, tread(e) = t, guards(e) = g, seg_(e) = s: and seg_(e) = s_.

Valid cycles are now defined as follows.

Definition 13 (Segmented and guarded cycles) Let _ be an execution trace and GL its seg-

mented and guarded lock graph. We say that a. cycle c E cycles(Go) is a segmented and guarded cycle

._ if__.the_guards_of__c are _alid,_the thr_eads_of.c are vail& and_the_segments o.f c are valid. We denote by

cycles, (Go) the set of segmented and guarded cycles in cydes(Gc).

16

The definitions of segmentation graph (Definition 9) and segmented and guarded lock graph (Defini-

tion tl) above are declarative. Figure 5 presents an algorithm for constructing the segmentation graph

and lock graph from an execution trace. The set of cycles in the graph GL, denoted by cylcess(GL),

see Definition 13, represents the potential deadlock situations in the program. The Segmentation

graph (Gs) and lock graph (GL) have the structure as outlined in Definition 9 and Definition 11

respectively. The lock context (CL) maps each thread to the set of locks owned by that thread at any

point fin t_e. Associated with each such lock is the segment in which it was acquired. The seg-ment

context (Cs) maps each thread to the segment in which it is currently executing. The algorithm

should after this explanation and the previously _ven abstract definitions be self explanatory.

Input: An execution trace G

Gz is a lock graph;

Gs is a segmentation graph;

CL : (T_, --* 2Z_xnat_ is a lock context;

Cs : [T_ ---* nat] is a segment context;

n : nat = 1 next avaiIable segment;

for(/= 1 .. i¢l) do

case ¢[ij of
z(t, o) -_

G= := G= U {(o', (sl, (t, g), s_), o) 1

g = {o"1 (o", _) e c_(t)} ^
•_ = cs(t)};

c_ := c_ t it _ c'_(_)U {(o,c_(t))}];
u(t, o)

c_ := cL t It _ CL(t)\{(o,.)}J;
(t, t2) --+

Gs := Gs U {(Cs(t,), n), (Cs(tl), n + 1)};

Cs := Cs f it1 _ n,t= _ n+ !];

n := n + 2;

j(h,t_) --+

Gs := Gs U {(Cs(ti),_), (Cs(t=),_)};
Cs := Cs t [t_ _ n);
n := n + 1;

end;

for each c in cycNes_(GL) do

print (" deadlock potentiaI:" ,c);

4,Er'2,IO,L2}),4 14 I4 A _ "0"'4

q.3"-T------_ 'l .,

//"

4,cr2. fG,L21],4

Fig. 5. The final algorithm and the segmented lock graph

Let us illustrate the algorithm with our example. We consider again the execution trace a presented

in Subsection 4.1. The segmentation graph for this trace is shown in .Figure 6 and the segmented

and guarded lock graph is shown in Figure.5. The segmentation graph is for illustrative purposes

augmented with the statements that caused the graph to be updated. We see in particular that

segment 6 of thread Ta executes before segment 7 of thread 2"1, written as 6 _, 7. Segment 6 is the one

in which Ta executes lines I9 and 20, while segment 7 is the one in which T_ executes tines 11 and 12.

The lock graph contains the same number of edges as the guarded graph in Figure 4, and the same

(thread, guard se_) labe!s. However, now edges are additionally labelled with the segmaents in which

.... locks are_taken. This makes the c_ycle .(_k_9"2Q) _-t (11, !_2)_segment invaIid since t_h_e.ta_rget s egm_ent Qf

the first edge (6) executes before the source segment of the second edge (7).

if

i'

t:

Main @ new Tl0.sta_

1

Fig. 6. S%_-aentation graph

17

Concerning the correctness of the algorithm, a theorem similar to Theorem 1 can be formulated.

However, the notion of composed transition system, as formulated in Definition 3, must be changed
to incorporate start and join events. We shall not do that here, but just mention that two new rules
must be added: one for start events s(tl, t2) that adds the initial state of thread t2 to the state, and

one for join events j(tl,t2), that is conditioned with the terminated status of t2. We say that an

execution trace or reflects a cycle c = (L, W,R) if forall (ll, (el, (t, g), s2), 12) E R, t holds ll in _, and
t wants 12 in a (see Section 3.4 for a definition these terms). The correctness is now stated as follows

(equivalent in formulation to Theorem 1, except for the use of cydess instead of cyclesg).

Theorem 2 (Correctness of segmented and guarded cycles). Let _ be an execution trace, GL

its segmcnted and guarded lock graph and c_cIess (GL) the set of segmented and guarded cycles. Let
vnZ be the set of execution traces of the system]l/=lSi, where the transition systems Si, i = 1 , m,

are obtained from projecting the trace _ on the m three& in Ta. Then:

- for all cycles c E cyctess(G5), there exists an execution trace _' in Z, such that _r' is

deadlocked and reflec'_s c (no false positives with respect to @.

- for all traces crI in Z, if o' is deadlocked, then there exists a cycle c E cycIess (GL), such
that _rt reflects c (no false negatives with respect to or).

5 Implementation and Experimentation

The algorithm presented in Section 4.4 has been implemented in the Java PathExplorer tool I14], in

short referred to as JPaX. JPaX anMyzes Java programs for deadlocks, using the presented algorithm,

and for data races, using a homegrown adaption of the Eraser algorithm [201 to work for Java. In
the fo/iowing we shall primarily focus on the deadlock analysis. JPaX itself is.written in Java, and
consists of two main modules, an instrumentation module and an observer module. The instrumenta-

tion module automatically instruments the bytecode class files of a compiled program by adding new
instructions that when executed generate the execution trace consisting of the events needed for the

analysis. In our case lock events l(t, o) and unlock events u(t, o), together with start events s(tz, t2)
and join events j(tl, t2) aregenerated. The generated events are either sent to a socket or written to
a file (in both cases in plain tex-_ format), depending on whether the analysis should be on-the-fly,
duririg the execution of the analyzed program, or whether it is acceptable that it is performed after

the analyzed pro_am has terminated. The file solut{on has been the one most frequentiy used in our

case studies. The observer module consequentIy reads theevent stream and dispatches this to a set of

observer rules, each rule performing a particular analysis that has been req.uested, such as deadIock
analy_sis_and_data_race anMxsis_._'I:his_mo.dular, r_Ie_ base.d_d_esi_:allows, a user to easily define new
r'mntime verification procedures without interfering with legacy code.

18

The Java bytecode instrumentation is performed using the Jtrek Java by_ecode engineering tool [4].

Jtrek makes it possible to easily read Java class files (bytecode files), and traverse them as abstract

syntax trees while examining their contents, and insert new code. The inserted code can access the

contents of various runtime, data structures, such as for example the call-time stack, and will, when

eventually executed, emit events carrying this extracted information to the observer. As already

mentioned, this form of analysis is not complete and hence may yield false negatives by missing to

report synchronization problems. A synchronization prob]em can most obviously be missed if one

or more of the synchronization statements invoIved in the problem do not get executed. To avoid

being entirely in the dark in these situations , we added a coverage module to the system that records

what lock-related instructions are instrumented and which of these that are actually executed. The

difference is printed as part of the error report for the user to react on, for example by generating
better test cases.

JPaX has been applied to two case studies at NASA Ames: a planetary rover controller (named

Kg), and a space craft_ altitude control sTs_em (ACS), both being translated to Ja',_ from C++ and

C respectively as part of an attempt to evaluate Java for mission software. 2 resource deadlocks

and 2 data races were seeded in the rover code by an independent team. 5PaX found them all. In

addition, an early version of the deadlock Mgorithm found a deadlock in the original C++ version

of I<9 that was UnexpEcted by the programmer. This experiment was performed by creating a C++

specific instrumentation module, whereas the observer module could be unmodified. In ACS, JPaX

found 2 unexpected data races and 2 seeded data race_. We also applied the JPaX deadlock analysis

algorithm to the dining philosopher example mentioned in Section 3.1. For the deadlocking version,

for N ---- 100 JPaX found the deadlock in 8 seconds, including instrumentation. For N -- 300 JPaX

found the deadlock in 22 seconds. For the deadlock free version, for N = 4/PaX concluded correctness

in 7. seconds, for N ----100 in 30 seconds, and for N ----300 in 2 minutes, out of which 40 seconds were

due to a slowdown in the running program due to instrumentation. This slowdown will be diminished

considerabIy in future work.

6 Conclusions

An algorithm has been presented for detecting deadlock potentiMs in concurrent programs by an-

Myzing execution traces. The algorithm extends a Classical algorithm by reducing the amount of

false positives reported, and has been implemented in the Java PathExpl0rer tool that in addition

to deadlocks also analyzes for data races and for consistency with user provided temporal properties.

Although JPaX analyzes Java programs, it can be applied to applications written in other languages

by modifying the instrumentation module. The advantage of trace analysis is that it scales extremely

well, in contrast to more formal methods, and in addition can detect errors that for example sta%ic

analysis cannot properly detect_ In future work, we expect to approach the problem of false negatives

(missed errors) by developing a framework for symbolically inferring what test cases are needed to

exercise all synchronization statements in a program. At an extreme, static analysis of deadlocks can

be combined with dynamic analysis. Current work attempts to extend the capabilities of JPaX with

aew Mgorithms for detecting other kinds of concurrency errors, such as other forms of data races

and communication deadlocks. An additional important issue that we will address is the performance

impact on the instrumented program,

References

i. K. Arnold and J. Gosling. The Jav}_Program_nin9 Language. Addison_Wesley'.1996.

2. C. A.rtho and A. Biere. Applying StaticAnalysis to Large-ScMe_ Multi-threaded Java Programs. In

-D_Gr-ant_-e_.tor_i$tp_4us+.r_-Hen-_wa_n9£_es_g-C_n_r°_c%_.pages_68-_Z.$_IEEE_C_mpu_er._S_ciety_
August 2001.

I,

I

ii'i:

19

3. T. Bail,A. Podelski,and S. Rajamani. Boolean and Cartesian Abstractions for Model Checking C

Programs. In Proceedings of TACAS'Oi: Tools and Algorithms for the Construction and Analysis of
Systems, LNCS, Genova, Italy, April 2001.

4. S. Cohen. Jtrek. Compaq,

h'ctp ://_ww.compaq, com/java/do_rnload/jtrek.

5. J. Corhett. Evaluating deadlock detectionmethods forconcurrentsoftware.IEEE Transaction on Soft-
ware Engineering, pages 1-22,March 1996.

6. J. Corbett, M. B. Dwyer, J. Hatcliff, C. S. Pasareanu, Robby, S. Laubach, and H. Zheng. Banders : Ex-

tracting Finite-state Models from Java Source Code. In Proceedings of the 22r_d International Conference
on Software Engineering, Limerich, Ireland, June 2000. ACM Press.

7. C. Demartini, R./osif, and R. Sisto. A Deadlock Detection Tool for Concurrent Java Programs. Software
Practice and Experience, 29(7):577-603, July 1999.

8. D. L. Detlefs, K. Rustan, M. Leino, G. Nelson, and J. B. Saxe. Extended Static Checking. Technical

Report 159, Compaq Systems Research Center, PMq Alto, California, USA, 1998.

9. E. V¢'. Dijkstra. Co-operating Sequential Processes. In F. Genuys, editor, Programming Languages. pages
43-112. New York Academic Press, 1968.

10. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In Proceedings of the 24th

A CM Sgmposium on Principles o/Programming Languages, pages 174-186, Paris, France, January 1997.

11. J. Harrow. Runtime Checking of Multithreaded Applications with Visual Threads. In SPIN Mode!

Checking and Software Verification, volume I885 of LNC_ pages 331-342. Springer, 2000.

12. K. Havelund and T. Pressburger. Model Checking Java Programs using Java PathFinder. International

Journal on Software Toots for Technology Transfer, 2(4):366--381, April 2000. Special issue of STTT

containing selected submissions to the 4th SPIN workshop, Paris, France, 1998.

13. Klaus Havelund. Using Runtime Analysis to Guide Model Checking of Java Programs. In Klaus Havelund,

John Penix, and Willem Visser, editors, SPIN Model Checking and Software Verification, volume 1885 of
LNCS, pages 245-264. Springer, 2000.

14. Klaus Havelund and Grigore Ro_u. Monitoring Java Programs with Java PathExplorer. In Klaus Havelund

and Grigore Ro_u, editors, Proceedings of the First InternationaZ Wor]cshop on Runtime Verification

(RV'OT), volume 55 of Electronic Notes in Theoretical Computer Science: pages 97-114, Paris, France,
July 2001. Elsevier Science.

I5. Gerard J. Holzmann and Margaret H. Smith'. A PracticaI Method for Verifying Event-Driven Software.

In Proceedings of ICSE'gg, InternationaZ Conference on Software Engineering, Los_Angeles, California,
USA, May 1999. [EEE/ACM.

16. E. Knapp. Deadlock Detection in Distributed Database Systems. ACM Computing Surveys, pages 303-
328, Dec. 1987.

17. D. Lea. Concurrent Programming in Java, Design Principles and Patterns. Add!scn-VJesley, 1997.

18. B. Nichols, D. Buttlar, and J. P. FarreH. Pthreat_ Programming. O'Reilly, 1998.
19. PolySpace. An Automatic Run-Time Error Detection Tool.

h_ctp ://';ww. polyspace, cam,

20. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic Data Race De-

tector for Mukithreaded Programs. ACM Transactions on Computer Systems, 15(4):391-411, November
1997.

21. M. Singhat. Deadlock detection in distributed systems. IEEE Computer, pages 37--48, Nov. 1989.

22. S. D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In SPIN Model Checking and
Software Verification, volume 1885 of LNCS, pages 224-244. Springer, 2000.

23. W'. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In Proceedings of ASE'2000:

The 15th IEEE International Conference on Automated Software Engineering. Ii_EE CS Press, September
2000.

